TERMIUM Plus®

La banque de données terminologiques et linguistiques du gouvernement du Canada.

ORBITAL AIRCRAFT [7 fiches]

Fiche 1 2012-10-19

Anglais

Subject field(s)
  • Air Traffic Control
  • Aircraft Piloting and Navigation
DEF

The holding of aircraft in an orbital path around selected prominent geographical locations that can be easily recognized from the air.

OBS

VFR: visual flight rules.

OBS

VFR holding procedure; visual holding: terms and definition standardized by the Glossary for Pilots and Air Traffic Services Personnel Committee

Français

Domaine(s)
  • Circulation et trafic aériens
  • Pilotage et navigation aérienne
DEF

Attente des aéronefs en vol sur une trajectoire orbitale autour de certains emplacements géographiques très visibles et reconnaissables.

OBS

VFR : règles de vol à vue.

OBS

procédure d'attente VFR : terme et définition normalisés par le Comité sur le Glossaire à l'intention des pilotes et du personnel des services de la circulation aérienne.

Espagnol

Conserver la fiche 1

Fiche 2 2007-02-16

Anglais

Subject field(s)
  • Orbital Stations
  • Research Experiments in Space
CONT

The Stanford Research Institute, Menlo Park, California, performed a study on a manned orbital research laboratory(MORL) for Douglas Aircraft Company, Inc., Santa Monica. Major conclusions of the study included the following : The MORL mission was highly desirable for the posture of the United States in the international community. The improvement of this position would represent, perhaps, MORL' s greatest contribution to our nation.

Français

Domaine(s)
  • Stations orbitales
  • Travaux de recherche dans l'espace
CONT

MORL est une station de 6,5 m de diamètre avec à bord 10 hommes pour des vols de longue durée. Lancé par une Saturn 1B, le MORL serait en orbite terrestre ou lunaire pour 2 à 5 années.

Espagnol

Conserver la fiche 2

Fiche 3 2007-02-05

Anglais

Subject field(s)
  • Astronautics
CONT

The local orbital reference system is defined at each point of the orbit by three unit vectors. These vectors are derived from the satellite position and velocity vectors: Vector L is colinear with position vector P (on the axis between the Earth’s centre and the satellite). It defines the yaw axis. Vector T is perpendicular to the orbital plane (vector L, vector V). It defines the pitch axis. Vector R completes the set of orthogonal axes. It lies in the plane defined by Vectors L and V and defines the roll axis. It does not coincide exactly with the velocity vector due to the eccentricity of the orbit.

CONT

Spacecraft axes. The three orthogonal axes of rotation : roll, pitch and yaw. If the spacecraft has a recognisable longitudinal axis or a specified forward direction of flight, the axes are analogous to those of an aircraft, where the roll axis is the longitudinal axis; the pitch axis is in the plane of the wings; and the yaw axis is the "vertical" axis, orthogonal to both the roll and pitch axes. The axes are mutually perpendicular, with an "origin" at the vehicle's centre of mass. For a winged spacecraft such as a Space Shuttle, the similarity with an aircraft is obvious. For expendable launch vehicles the roll axis is the axis which is vertical at launch and the other axes are more-or-less arbitrarily assigned since the vehicle rotates about the roll axis in flight.... The axes of a cylindrical spacecraft(e. g. Apollo, Suyuz, etc.) are similar to those of an ELV [Expendable Launch Vehicle] at launch, but one orbit assume the axis-definition of an aircraft(i. e. defined relative to the pilot's seat). The axes of a satellite mirror those of an aircraft "flying along the orbital arc" : the roll axis is aligned with the direction of travel; the yaw axis passes through the sub-satellite point; and the pitch axis is orthogonal to the other two. For a satellite in an equatorial orbit, the pitch axis is aligned approximately with the Earth's spin axis. The pitch axis is also the spin axis for the spin-stabilised satellite.

OBS

In the compilation of engineering drawings the three orthogonal axes are often labelled in Cartesian fashion: x=roll, y=pitch, z=yaw. For the three-axis stabilised spacecraft, the x-axis and y-axis are otherwise known as the east-west and north-south axes, respectively; the z-axis passes through the sub-satellite point. This leads to the definition of the box-shaped satellite’s faces as follows: the "plus-x face" faces east; the "minus-x face" faces west; +y faces south; -y faces north; +z is the Earth-pointing face; and -z is the "anti-Earth face."

OBS

roll axis; axis of roll: terms officially approved by the International Space Station official approval Group (ISSOAG) and by the RADARSAT-2 Terminology Approval Group (RTAG).

Français

Domaine(s)
  • Astronautique
CONT

Le repère orbital local est défini en chaque point de l'orbite par les trois vecteurs unitaires. Ces vecteurs sont construits à partir du vecteur position et du vecteur vitesse du satellite : le vecteur L est colinéaire au vecteur position P (sur l'axe centre Terre, satellite). Il définit l'axe de lacet. Le vecteur T est perpendiculaire au plan de l'orbite (vecteur L, vecteur V). Il définit l'axe de tangage. Le vecteur R complète le trièdre. Il appartient au plan (vecteur L, vecteur V) et définit l'axe de roulis. Il ne coïncide pas exactement avec le vecteur vitesse à cause de l'excentricité de l'orbite.

OBS

axe de roulis : terme uniformisé par le Groupe de travail de la terminologie de la Station spatiale internationale (GTTSSI) et par le Groupe de travail de la terminologie de RADARSAT-2 (GTTR).

Espagnol

Conserver la fiche 3

Fiche 4 2007-02-05

Anglais

Subject field(s)
  • Launching and Space Maneuvering
CONT

The local orbital reference system is defined at each point of the orbit by three unit vectors. These vectors are derived from the satellite position and velocity vectors: Vector L is colinear with position vector P (on the axis between the Earth’s centre and the satellite). It defines the yaw axis. Vector T is perpendicular to the orbital plane (vector L, vector V). It defines the pitch axis. Vector R completes the set of orthogonal axes. It lies in the plane defined by Vectors L and V and defines the roll axis. It does not coincide exactly with the velocity vector due to the eccentricity of the orbit.

CONT

Spacecraft axes. The three orthogonal axes of rotation : roll, pitch and yaw. If the spacecraft has a recognisable longitudinal axis or a specified forward direction of flight, the axes are analogous to those of an aircraft, where the roll axis is the longitudinal axis; the pitch axis is in the plane of the wings; and the yaw axis is the "vertical" axis, orthogonal to both the roll and pitch axes. The axes are mutually perpendicular, with an "origin" at the vehicle's centre of mass. For a winged spacecraft such as a Space Shuttle, the similarity with an aircraft is obvious. For expendable launch vehicles the roll axis is the axis which is vertical at launch and the other axes are more-or-less arbitrarily assigned since the vehicle rotates about the roll axis in flight.... The axes of a cylindrical spacecraft(e. g. Apollo, Suyuz, etc.) are similar to those of an ELV [Expendable Launch Vehicle] at launch, but one orbit assume the axis-definition of an aircraft(i. e. defined relative to the pilot's seat). The axes of a satellite mirror those of an aircraft "flying along the orbital arc" : the roll axis is aligned with the direction of travel; the yaw axis passes through the sub-satellite point; and the pitch axis is orthogonal to the other two. For a satellite in an equatorial orbit, the pitch axis is aligned approximately with the Earth's spin axis. The pitch axis is also the spin axis for the spin-stabilised satellite.

OBS

In the compilation of engineering drawings the three orthogonal axes are often labelled in Cartesian fashion: x=roll, y=pitch, z=yaw. For the three-axis stabilised spacecraft, the x-axis and y-axis are otherwise known as the east-west and north-south axes, respectively; the z-axis passes through the sub-satellite point. This leads to the definition of the box-shaped satellite’s faces as follows: the "plus-x face" faces east; the "minus-x face" faces west; +y faces south; -y faces north; +z is the Earth-pointing face; and -z is the "anti-Earth face."

OBS

pitch axis: term officially approved by the International Space Station official approval Group (ISSOAG) and by the RADARSAT-2 Terminology Approval Group (RTAG).

Français

Domaine(s)
  • Lancement et manœuvres dans l'espace
CONT

Le repère orbital local est défini en chaque point de l'orbite par les trois vecteurs unitaires. Ces vecteurs sont construits à partir du vecteur position et du vecteur vitesse du satellite : Le vecteur L est colinéaire au vecteur position P (sur l'axe centre Terre, satellite). Il définit l'axe de lacet. Le vecteur T est perpendiculaire au plan de l'orbite (vecteur L, vecteur V). Il définit l'axe de tangage. Le vecteur R complète le trièdre. Il appartient au plan (vecteur L, vecteur V) et définit l'axe de roulis. Il ne coïncide pas exactement avec le vecteur vitesse à cause de l'excentricité de l'orbite.

OBS

axe de tangage : terme uniformisé par le Groupe de travail de la terminologie de la Station spatiale internationale (GTTSSI) et par le Groupe de travail de la terminologie de RADARSAT-2.

Espagnol

Conserver la fiche 4

Fiche 5 2002-11-13

Anglais

Subject field(s)
  • Spacecraft
  • Launching and Space Maneuvering
CONT

The ideal reusable launcher would be analogous to a normal aircraft in that it would be able to take off from many possible bases on Earth, enter the desired orbital plane, accelerate to orbital velocity, release its payload, de-orbit, dissipate its kinetic energy and land at the take-off base to be readied for its next flight after a quick turn-around. The vehicle would maintain physical integrity during a mission, would be flown ’very often’, and its cost per flight would be compatible with the value of the missions undertaken. The vehicle would also be able to abort its mission any time in the case of mishap and land intact with its payload. This ideal vehicle is the 'single-stage-to-orbit reusable rocket launcher’, or SSTO-RRL.

Terme(s)-clé(s)
  • single stage to orbit reusable rocket launcher

Français

Domaine(s)
  • Engins spatiaux
  • Lancement et manœuvres dans l'espace
CONT

La NASA est responsable de la recherche et de la préparation de lanceurs futurs, en particulier le lanceur monoétage réutilisable Delta Clipper.

Espagnol

Conserver la fiche 5

Fiche 6 2001-05-15

Anglais

Subject field(s)
  • Types of Aircraft
CONT

The orbital aircraft has the capability to fly suborbital missions without propellant transfer, to distances of 3, 000 to 6, 000 nautical miles, depending on the aerodynamic configuration This capability exists because the airframe is capable of independent takeoff and landing. This offers a transcontinental range for a number of alternate missions that are difficult to imagine for an air launch concept. For the same reason, the tanker and orbital aircraft may be based at different locations, and interfaced only in flight. This offers more basing flexibility and removes the requirements for specialized facilities and ground support equipment such as that needed to mate the Shuttle orbiter to its carrier aircraft.

Français

Domaine(s)
  • Types d'aéronefs
DEF

Avion hypersonique dont une partie du vol est conçu pour se dérouler en orbite à la manière des satellites.

CONT

Enfin un avion orbital monoétage doté d'un moteur combiné, le statoréacteur (réacteur à double flux) assurant la poussée jusqu'à 35000 mètres, le propulseur de fusée fournissant l'énergie nécessaire à la mise en orbite.

Espagnol

Conserver la fiche 6

Fiche 7 2001-04-01

Anglais

Subject field(s)
  • Spacecraft
CONT

The first stage is a large(>80 m long, >40 m wing-span), unmanned hypersonic aircraft powered by hybrid, air-breathing turbo-ramjets to carry a smaller Hypersonic Orbital Reusable Upper Stage(HORUS) to an altitude of approximately 40 km. HORUS would then separate at a speed of more than Mach 6 and ignite conventional liquid oxygen/liquid hydrogen engines to reach LEO. With a 4-man crew, HORUS would be capable of delivering up to three metric tons to a baseline 450-km, 28. 5 inclination orbit. An unmanned version of HORUS, HORUS-C, could deliver up to seven metric tons of cargo and return a like amount to Earth.

Français

Domaine(s)
  • Engins spatiaux

Espagnol

Conserver la fiche 7

Avis de droit d’auteur pour la banque de données TERMIUM Plus®

© Services publics et Approvisionnement Canada, 2024
TERMIUM Plus®, la banque de données terminologiques et linguistiques du gouvernement du Canada
Un produit du Bureau de la traduction

En vedette

Portail linguistique du Canada

Accédez à une collection de ressources canadiennes sur tous les aspects du français et de l'anglais, y compris des jeux.

Outils d'aide à la rédaction

Les outils d’aide à la rédaction du Portail linguistique ont fait peau neuve! Faciles à consulter, ils vous donnent accès à une foule de renseignements utiles pour mieux écrire en français et en anglais.

Lexiques et vocabulaires

Accédez aux lexiques et vocabulaires du Bureau de la traduction.

Date de modification :